MUON ¢ — 2

OFFLINE COMPUTING
AND SOFTWARE
MANUAL

[GM2 V5_00_00]

November 19, 2014 Git version: v5_00_00_01-0-gaf91171 GMQ—dOC—1825

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825

Contents

What is this document? 5
1.1 What code goes with this document?)
1.2 Obtaining newer versions of this documentation 6

1.8 Obtaining the source for this documentation, contributing to it, and building it 6

Releases of gm2 9
2.1 gm2 v5_00_00 -q e6:prof 9

2.2 gm2 v201402 -q e4:prof 9

Getting started with gm2artexamples 11
3.1 Logging in and selecting a release area 11
3.2 Starting a development area 12

3.3 Checkout code 14

3.4 Building code 15

3.5 Testing 15

3.6 Running 17

3.7 Logging in again 18

3.8 Summary 18

Running the simulation 21

Developer Workflow 23

Writing Source Code 25

6.1 Top level CMakeLists. tzt file 25

6.2 Organizing Source Code 27

6.3 Writing Modules 27

6.4 Writing Services 28

6.5 Writing Input Source Modules 28

6.6 Directory level CMakeLists. tzt file 28
6.7 Libraries produced from building 30

6.8 Using External Code (Linking) 30

Things You May Do in Your Code 37

7.1 Dealing with parameters 37
7.2 Readling enviornment variables 37
7.8 Throwing an exception 37

7.4 Finding a file 38

Frequently Asked Questions 39

Index 43

1

What is this document?

This document is meant to be a user’s manual to the Muon g-2 offline
and simulation software and computing system.! This document is

a PDF file, so it is trivial to search and you can copy it to your com-
puter/tablet /phone/watch and read it anywhere. It is also generated
by a git repository using the same build system infrastructure as our
code base, so it is easy to version itself and keep in sync with code ver-
sions. We also support writing sections directly in LaTeX (which you
probably already know) and in Markdown (like LaTeX, but simpler).
Finally, there’s a special script that can run shell commands and put
the output directly in the document (no cutting and pasting).

The idea is to have documentation that is easy to read, easy to
write, and easy to keep up to date. All links in the document are
clickable in your PDF reader.

One nice thing about having Wiki pages was that each page can
be short and so the documentation looks manageable, until you try to
find something. The problem with one big PDF file is that it will be
big and will look overwhelming. Remember to read the section titles
carefully and just read what you need. Furthermore, all of the links
to sections (e.g. in the table of contents) are live and will allow you to
navigate the file easily. Nearly every PDF reader has a back button
to take you back to previously read pages (back-traversing links if
necessary); it will probably come in handy.

1.1 What code goes with this document?

The title of this document states the corresponding version of gm2.
gm2 is the “umbrella” product that specifies a release. For example,
this version of the document goes with gm2 v5_00_00. On the bottom
of the title page is the git version information for this document
itself. For this version, it reads v5_00_00_01-0-gObe91cO-dirty.
There are three or four parts to this description, separated by dashes

! This document replaces the docu-
mentation we had in the Redmine
Wiki because the Wiki was hard to
edit and keep up-to-date, hard to sync
with versions, hard to search, and
required a network connection.

6 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 Vv5__00_00]

(not underscores; the underscores are part of the version). The first
part corresponds to the gm2 version, with an additional two digits at
the end since the documentation may be updated more often than
the g-2 code. This version should be the git tag of this document.
The second part is the number of commits past the tag. If it is non-
zero, then there are untagged changes. The third part is g followed
by the git hash of the commit corresponding to this document (e.g.
0be91c0). All of this could be followed by -dirty, which means that

this document comes from source files with uncommitted changes.? 2 Official documentation has zero for
the second part and no -dirty.

1.2 Obtaining newer versions of this documentation

The latest official version of this documentation is in GM2 DocDB as

GM2-DOC-1825.3 If you want look at an old version of the documen- 3 DocDB uses its own versioning
scheme (just a sequential number)

. X . which does not correspond to the gm2
you want, as described in the next section. release.

tation, you can do that in DocDB, or better, build the specific version

1.3 Obtaining the source for this documentation, contribut-
ing to it, and building it

To get the source,? follow the instructions in section 3. When you 4 Note: The program pandoc at
http://johnmacfarlane.net/pandoc is

. . used to convert markdown and other
gm2swdocs. You will be in the develop branch. If you want to check- file formats to LaTeX. pandoc will

out a particular tag, branch, or hash, you can do that with the git soon be part of our gm2 release, but
in the meantime, you can download

it for your Mac by clicking on the
previous link. You can also download
git tag # Show all of the tags it for Linux, but it will be easier if

git checkout v5_00_00_02 # Check out sources for this tag you wait for it to be in the release.

get to section 3.3, instead of checking out gm2artexamples, checkout

checkout command. For example,

You can also do git checkout on a git commit hash value to
checkout the sources for that particular commit.

You can build those sources into the pdf file by doing

mrb s and then mrb b. The resulting pdf file will be at
$MRB_BUILDDIR/gm2swdocs/latex/manual.pdf.

1.3.1 Changing and adding to documentation

If you want to change or add documentation, you should start a
feature branch with git flow feature start <your_branch_name>.
You can then alter or add your own documentation. When
you are ready to complete your feature branch, send mail to
gm2-sim@fnal.gov and let people look at your changes first.

There are several directories in gm2swdocs. You should not need to
alter anything in the Modules nor ups directories. The former contains
cmake macros needed for building the source files into PDF. The

http://gm2-docdb.fnal.gov/cgi-bin/ShowDocument?docid=1825
http://johnmacfarlane.net/pandoc

WHAT IS THIS DOCUMENT? 7

latter is for the build and release system. The other directories, latex,
markdown, bashmd is where you’ll put your documentation or make
changes.

The latex directory has files in LaTeX as well as some LaTeX
infrastructure files. The most important file in there is manual. tex,

which is the main driver file for this document.? All other parts come 5 We are using a document class based
on “Tufte” documents, where notes go

into the wide right margin. Please see
manual.tex except to add a \include for your document file. If you the existing LaTeX files for examples.

in with an \include{filename.tex} command. You should not alter

add your own LaTeX file in the latex directory, you must add the
corresponding \include to manual.tex, and follow instructions in
latex/CMakelLists.txt.

The markdown directory has files written in the Markdown for-
mat and converted by Pandoc. A Google search on Markdown will
give you lots of information. The Pandoc variant of Markdown is
described in http://johnmacfarlane.net/pandoc/demo/example9/
pandocs-markdown.html. See existing files in this directory for exam-
ples. If you want to write something quickly and do not need fancy La-
TeX, then Markdown is the way to go. If you add a file to this direc-
tory, you must follow the instructions in markdown\CMakeLists.txt.

The bashmd directory has files written in Markdown but
also actually runs bash code with the output going into
the document. The best file to look at for an example is
bashmd/gettingStarted_gm2artexamples.bashmd. Again, if
you add a file to this directory, see bashmd/CMakeLists.txt for
instructions.

Pandoc understands many Wiki mark-up formats. If you have a
favorite one, it is possible to add it to this document and have pandoc
process it. Ask for help. If you are not passionate about mark-up
formats, then please just use Markdown as it works very well.

1.5.2 Building the documentation

Assuming your environment is set up (see above) then you need to
do, once per session, . mrb s . Then you can do mrb b to build
everything. The first time will be slow since you have to run all the
commands in bashmd/gettingStarted_gm2artexamples.bashmd. But
subsequent builds will be quite fast. Note that pdflatex will run
many times to ensure that references and table of contents are all
resolved.
The output PDF file will be in $MRB_BUILDDIR/gm2swdocs/latex/manual.pdf.
On a Mac, you can view it with,

open $MRB_BUILDDIR/gm2swdocs/latex/manual.pdf

When you have completed your feature branch, send mail to
gm2-sim@fnal.gov and await further instructions.

http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html
http://johnmacfarlane.net/pandoc/demo/example9/pandocs-markdown.html

2
Releases of gm2

This sections describes the various releases of gm2.

2.1 gm2 v5_00_00 -q e6:prof

Note the new version numbering scheme. The plan is that new ver-
sions of art advance the first number. New versions of g-2 code ad-
vance the second number. Bug fixes for g-2 code advance the last
number. This release is the fifth one for g-2 since time began, thus the
v5.

gm2 v5_00_00 has the following;:

e art vil_12_02 Release Notes

e root vb_34_21b

e geantd v4_9_6_p03e

e gcc v4_9_1 with -std=c++1y for C++14 features.

More needs to go here.

2.2 gm2 v201402 -q e4:prof

gm2 v201402 has the following:
More needs to go here.

https://cdcvs.fnal.gov/redmine/projects/art/wiki/Release_Notes_11202

3

Getting started with gm2artexamples

This section is a short tutorial to show you quickly how to get started
by,

e Logging in and selecting a release (the latest)
o Starting a development area

o Checking out code (gm2artexamples)

e Building it

o Testing

o Running

e Logging in again

For this tutorial, we’ll use the gm2artexamples product.! This is a
good product to use if you are getting started.

3.1 Logging in and selecting a release area

Fermilab has several interactive virtual machines for use by the Muon

g — 2 collaboration. See here for more information about how to log in.

Our releases (libraries, executables) are served by CVMFS.2 CVMFS
is already mounted on the Fermilab interactive VMs. If you have a
Magc, you can install CVMFS yourself by looking here, and then use
your Mac to develop code.

Once you've logged into the machine, you need to select a release
area. You always® need to do this step everytime you log in. If you
are on a Fermilab interactive VM (gm2gpvm01, gm2gpvm02, gm2gpvm03,
gm2gpvm04), you select the release area by doing,

$ source /grid/fermiapp/gm2/setup # On gm2gpum machine

Note that $ is the shell prompt (don’t type it in).

If you are on a Mac or another system with CVMFS OASIS in-
stalled, you do (and will see in response, which will be the same as the
command above)

L' We use the terms product,
project, and package somewhat
interchangeably. All of our prod-
ucts live on the Redmine server,
http://redmine.fnal.gov

2 CVMFS is a system that serves
application code and updates auto-
matically when new files are released.

3 You need to do this step everytime
you log in because you can use
different release areas for the same
development area, say, for example, if
CVMEFS is down or you are sharing

a directory between your Mac and a
Linux system.

https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/GPCF
https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/InstallingOasisOnMacLaptop

12 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5_00_00]

$ source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Mac

g-2 software

--> To list gm2 releases, type
ups list -aK+ gm2

--> To use the latest release, do
setup gm2 v5_00_00 -q e6:prof

For more information, see https://cdcvs.fnal.gov/redmine/projects/g-2/wiki/ReleaseInformation

You may want to put that source command in your ~/.profile
file. Furthermore, if you are on a gm2gpvm machine, you should also
put setup git at the bottom of your ~/.profile.

3.2 Starting a development area

Now that the release area is selected, you need to make a development
area. The development area contains source code, build products,
and a personal release area. You typically use a development area
for a particular topic, such as adding a feature to the simulation or
generating a plot for some study. You can have as many development
areas as you want, but only one can be active at a time.
Make an empty directory and go there. If you are on a gm2gpvm
machine, you should make an area in /gm2/app/users/<YOUR_NAME>.* 41f this directory does not exist, you
You can put code in your home directory, but that has a small quota can make it with the mkdir command.
and you can easily use it all up. There is no quota on /gm2/app, but it
is not backed up.

$ mkdir /gm2/app/users/lyon/first-try # On gm2gpum
$ cd /gm2/app/users/lyon/first-try

If you are on your Mac, or some other machine, make the directory
where you have room.

$ mkdir ~/Development/g-2/first-try # On Mac
$ cd ~/Development/g-2/first-try

Since you are starting out with a new area, you must choose a
release. You should generally choose the latest, which will be specified
in the output when you selected the release area. Just do what the

command Says,5 5 setup is a ups command. UPS is
our release and product management
system.

$ setup gm2 v5_00_00 -q e6:prof

So here we are setting up g-2 release v5_00_00 with the e6:prof
qualifier. e6 indicates the type of compiler we’re using (in our case
gce 4.9.1 with C++14 features turned on - this code is decided by
the art team) and prof means we’ll do a profile build. Profile builds

GETTING STARTED WITH GM2ARTEXAMPLES

are optimized and have debugging symbols turned on. We only use
profile builds.

Now, you must create the development area. You will start using
the mrb commands. mrb means “multi-repository build system” and
is a build system used by Muon g — 2, the art developers, and LBNF.
You can get a list of mrb commands with (you don’t have to type in
the full path that you see below),

$ mrb -h
Usage /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/mrb/v1_03_00_gm2/bin/mrb [-h for help]"

Tools (for help on tool, do "/cvmfs/oasis.opensciencegrid.org/gm2/prod/external/mrb/v1_03_00_gm2/bin/mrb <tool> -h")

newDev (n) Start a new development area

gitCheckout (g) Clone a git repository

svnCheckout (svn) Checkout from a svn repository

setEnv (s) Setup development environment (mrbSetEnv)

build (b) Run buildtool

install (i) Run buildtool with install

test (t) Run buildtool with tests

setup_local_products (slp) Setup local products (mrbslp) [not local sources]
zapBuild (z) Delete everything in your build area

newProduct (p) Create a new product from scratch

changelog (c) Display a changelog for a package

bumpVersion (bv) Bump version number of a package

updateDeps (ud) Update dependencies in CMakeLists.txt and product_deps
updateCM (uc) Update the master CMakeLists.txt file

makeDeps (md) Build or update a header level dependency list
checkDeps (cd) Check for missing build packages

pullDeps (pd) Pull missing build packages into MRB_SOURCE

Aliases (we use aliases for these commands because they must be sourced)

mrbsetenv Setup a development enviornment and local products [use this more often]
(source $MRB_DIR/bin/mrbSetEnv)

mrbslp Setup only the products installed in the working localProducts_XXX directory
(source $MRB_DIR/bin/setup_local_products)

The mrb commands are the same if you are on gm2gpvm or your
Mac.
To initialize your development area, do this in an empty directory.

$ mrb newDev

building development area for gm2 v5_00_00 -q e6:prof

MRB_BUILDDIR is /Users/lyon/Development/g-2/first-try/build_d13.x86_64
MRB_SOURCE is /Users/lyon/Development/g-2/first-try/srcs
INFO: cannot find releaseDB/base_dependency_database

mrb checkDeps and pullDeps may not have complete information
MRB_PROEJCT IS gm2

IMPORTANT: You must type
source /Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof/setup
NOW and whenever you log in

Read the output carefully. Some things to note:

e A build directory is created and note its name contains the flavor

of your machine.® You can get to that directory easily with cd 6 Mac is d13 (for Darwin version
$MRB BUILDDIR 13) and slf5, slf6 are marked as

appropriate.

13

14 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5_ 00_00]

e A source directory is created for your source code. You can get to
it easily by doing cd $MRB_SOURCE .

e You can ignore the message about the release database. That’s a
LBNF thing we don’t use.

e The important message is indeed important. There is a set up
script that you need to run that sets up your environment. Run
that script now and whenever you log in to restore your develop-
ment environment. You don’t need to type in the whole path, since
you are at the top of your development area.

$ source localProducts_gm2_v5_00_00_e6_prof/setup

MRB_PROJECT=gm2

MRB_PROJECT_VERSION=v5_00_00

MRB_QUALS=e6:prof

MRB_TOP=/Users/lyon/Development/g-2/first-try
MRB_SOURCE=/Users/lyon/Development/g-2/first-try/srcs
MRB_BUILDDIR=/Users/lyon/Development/g-2/first-try/build_d13.x86_64
MRB_INSTALL=/Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof

PRODUCTS=/Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof:/cvms/oasis.opensciencegrid.org/gm2/prod/g-2:/cvms/oasis . opensciencegrid. org/gm2/prod/g-2: /Users/lyon/Development/g-2/tr

e A local products area is also created. This is your own personal
release area that overlays the official one (so stuff you have in your
personal release area override products in the official one).

3.8 Checkout code

Now you need to checkout some code. For this example, we’ll use the

gm2artexamples product. All of our code lives in git repositories on

http://redmine.fnal.gov . The mrb gitcheckout command is used to

clone the git repositories (this is a convenience command so you don’t

have to remember the git URLs and other set up tasks).7 Let’s check " You can type mrb g for short.
out the gm2artexamples product. You must be in the srcs directory

of your development area. The command is rather chatty.

$ cd srcs

$ mrb g gm2artexamples

git clone: clone gm2artexamples at /Users/lyon/Development/g-2/first-try/srcs

NOTICE: You do not have read-write permissions for this repository
—--->> DID YOU RUN kinit TO GET A KERBEROS TICKET? <<---—

NOTICE: Running git clone http://cdcvs.fnal.gov/projects/gm2artexamples
Cloning into 'gm2artexamples'...

ready to run git flow init for gm2artexamples

Already on 'master’

Your branch is up-to-date with 'origin/master’.

Using default branch names.

Already on 'develop'

Your branch is up-to-date with 'origin/develop'.

Branch develop set up to track remote branch develop from origin.
Already up-to-date.

NOTICE: Adding gm2artexamples to CMakeLists.txt file

NOTICE: You can now 'cd gm2artexamples'

You are now on the develop branch (check with 'git branch')
To make a new feature, do 'git flow feature start <featureName>'

GETTING STARTED WITH GM2ARTEXAMPLES 15

At this moment, you need to switch to a particular feature branch
that is compatible with gm2 v5_00_00. Do the following78

$ cd gm2artexamples
$ git flow feature track gm2_5
$ cd

Switched to a new branch 'feature/gm2_5'
Branch feature/gm2_5 set up to track remote branch feature/gm2_5 from origin.

Summary of actioms:
- A new remote tracking branch 'feature/gm2_5' was created
- You are now on branch 'feature/gm2_5'
If you have more code to checkout, then run more mrb g com-

mands.

3.4 Building code

Now that your code is checked out, you need to build it. The first step
you need to do is to “extend” your environment with any products
your build depends upon set up. The way to do this is to do source
mrb setEnv.? You need source (or . for short) because your shell
environment needs to be extended with new environment variables.
You need to run this command after you log back into and start
developing. If you do not make major changes to your code (you don’t
introduce new dependencies), then you only need to run the command
once before you build.

$. mrb s

8 This step will disappear shortly.

9 There are two shortcuts for source
mrb setenv; you can do . mrb s
or mrbsetenv (the latter is a bash
function that does the source for

you).

local product directory is /Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof

——————————— this block should be empty ------------------

ERROR: Cannot do unsetup, SETUP_CETPKGSUPPORT is not defined

The working build directory is /Users/lyon/Development/g-2/first-try/build_d13.x86_64
The source code directory is /Users/lyon/Development/g-2/first-try/srcs

——————————— check this block for errors

For now, ignore the error about SETUP_CETPKGSUPPORT (it is be-
nign). You should not see any errors between the dashed lines. If you
do, then you have some product dependency mismatch (ask for help).

Now you can build your code. The build command is mrb build.'®

$ mrb b
The long output is not shown. Hopefully there will be no compila-

tion errors. If you get some, ask for help.

3.5 Testing

gm2artexamples is currently the only product that has unit tests. To

try them, just do mrb test.!!

Omrb b for short

"mrb t for short. A short build check
will occur to ensure that everything is
built.

16 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5_ 00_00]

$ mrb t

/Users/lyon/Development/g-2/first-try/build_d13.x86_64

calling buildtool -I /Users/lyon/Development/g-2/first-try/localProducts_gm2_v5_00_00_e6_prof -b -t
INFO: Install prefix = /Users/lyon/Development/g-2/first-try/localProducts_gn2_v5_00_00_e6_prof
INFO: CETPKG_TYPE = Prof

INFO: Stage cmake.

-- Product is gm2artexamples v2_00_00 e6:prof
Module path is /cvmfs/oasis.opensciencegrid.org/gm2/prod/external/art/vi_12_02/Modules;/cvmfs/oasis.opensciencegrid.org/gn2/prod/external/cetbuildtools/v4_03_02/Modules
-- set_install_root: PACKAGE_TOP_DIRECTORY is /Users/lyon/Development/g-2/first-try/srcs/gm2artexamples

-- Building for Darwin di13 x86_64

-- set_install_root: PACKAGE_TOP_DIRECTORY is /Users/lyon/Development/g-2/first-try/srcs/gm2artexamples

-- Selected diagnostics option CAUTIOUS

-- cmake build type set to Prof in directory <top> and below

- DEFINE (-D): ;NDEBUG

-- compiler flags for directory <top> and below

- C++ FLAGS: -03 -g -gdwarf-2 -fno-omit-frame-pointer -Werror -pedantic -std=c++1ly -Wall -Werror=return-type

C FLAGS: -03 -g -gdwarf-2 -fno-omit-frame-pointer -Werror -pedantic -Wall -Werror=return-type

-- Boost version: 1.56.0

-- Found the following Boost libraries:

- chrono

—- date_time
-- filesystem

-- graph

- iostreams

- locale
prg_exec_monitor

-- program_options

- random

-- regex

- serialization

-- signals

-- system

- thread

- timer
unit_test_framework
-~ wave

-- wserialization

—-- CPACK_PACKAGE_NAME and CPACK_SYSTEM_NAME are gm2artexamples d13-x86_64-e6-prof

-- Configuring done

CMake Warning (dev):
Policy CMP0042 is not set: MACOSX_RPATH is enabled by default. Run "cmake
--help-policy CMP0042" for policy details. Use the cmake_policy command to
set the policy and suppress this warning.

MACOSX_RPATH is not specified for the following targets

gm2artexamples_DataObjects_dict
gm2artexamples_DataObjects_map
gm2artexamples_HitAndTrackObjects_dict
gm2artexamples_HitAndTrackObjects_map
gm2artexamples_Lessonl_HelloWorldl_module
gn2artexamples_Lessoni_HelloWorld2_module
gn2artexamples_Lessoni_MyDatumReader_module
gn2artexamples_Lessonl_ProduceMyLittleDatum_module
gn2artexamples_Lesson2_makeHits_module
gn2artexamples_Lesson2_makeRotatedHits_module
gn2artexamples_Lesson2_makeSimpleTracksFromNewHits_module
gm2artexamples_Lesson2_makeSimpleTracksFromOldHits_module
gm2artexamples_Lesson2_readHits_module
gm2artexamples_Lesson2_readSimpleTracks_module
test_MyLittleDatumAnalyzer_module
test_MyLittleDatumProducer_module

This warning is for project developers. Use -Wno-dev to suppress it.

-~ Generating done
-- Build files have been written to: /Users/lyon/Development/g-2/first-try/build_d13.x86_64

INFO: Stage cmake successful.

INFO: gm2artexamples version 2.00.00 configured.

INFO: Stage build.

3%] Built target gm2artexamples_DataObjects

Built target gm2artexamples DataObjects_dict

Built target gm2artexamples_DataObjects_map

Built target gm2artexamples_HitAndTrackObjects

Built target gm2artexamples_HitAndTrackObjects_dict

Built target gm2artexamples_HitAndTrackObjects_map

Built target gm2artexamples_Lessonl_HelloWorldi_module

Built target gm2artexamples_Lessonl_HelloWorld2_module

Built target gm2artexamples_Lessonl_MyDatumReader_module

Built target gm2artexamples_Lessonl_ProduceMyLittleDatum_module

Built target gm2artexamples_Lesson2_makeHits_module

Built target gm2artexamples_Lesson2_makeRotatedHits_module

Built target gm2artexamples_Lesson2_makeSimpleTracksFromNewHits_module
Built target gm2artexamples_Lesson2_makeSimpleTracksFrom0ldHits_module

[
[
[
[
r
[
[
r
[
r
[
s
[
C

6271
65%]
68%]
7141
75%]
78%]
81%]
847%]
87%]
90%]
93%]
96%]
100%]

real
user

Built
Built
Built
Built
Built
Built
Built
Built
Built
Built
Built
Built
Built

target gm2artexamples_Lesson2_readHits_module

GETTING STARTED WITH GM2ARTEXAMPLES

target gm2artexamples_Lesson2_readSimpleTracks_module

target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+bin+myLittleDatum_wr.sh

target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+bintvery_simple_test.sh

target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+MyLittleDatum_test.d+MyLittleDatum_test.fcl
target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+MyLittleDatum_test.d+messageDefaults.fcl
target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+MyLittleDatum_r.fcl
target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+myLittleDatum_wr.sh.d+MyLittleDatum_w.fcl
target +Users+lyon+Development+g-2+first-try+build_d13.x86_64+gm2artexamples+test+myLittleDatum_vr.sh.d+messageDefaults.fcl

target simple_test

target test_MyLittleDatumAnalyzer_module
target test_MyLittleDatumProducer_module

target test_with_boost

0m5.019s
Om1.659s
sys Oml.361s

INFO: Stage build successful.

INFO: Stage test.

Test project /Users/lyon/Development/g-2/first-try/build_d13.x86_64
Start 1:
1/5 Test #1:
Start 2:
2/5 Test #2:
Start 3:
3/5 Test #3:
Start 4:
4/5 Test #4:
Start 5:
5/6 Test #5:

very_simple_test.sh
very_simple_test.Sh
simple_test

simple_testn
test_with_boost

test_with_boost
MyLittleDatum_test
MyLittleDatum_test ...
myLittleDatum_vr.sh
myLittleDatum_wr.Sh

100% tests passed, O tests failed out of 5

Total Test time (real) = 1.45 sec

INFO: Stage test successful.

3.6 Running

Passed

Passed

Passed

Passed

Passed

0.01

sec

sec

sec

sec

sec

There are several fcl files you can run for gm2artexamples.

$ 1s $MRB_SOURCE/gm2artexamples/fcl

CMakeLists.txt
hellol.fcl
hello2.fcl
makeAndReadDatum.fcl
makeAndReadTracksFromOldHits.fcl
makeDatum.fcl
makeHits.fcl
makeHitsRotated.fcl
makeTracksFromNewHits.fcl
makeTracksFrom0ldHits.fcl
messageservice.fcl

minimalMessageService.fcl
readDatum.fcl
readHits.fcl
readSimpleTracks.fcl

Our art executable is called gm2. FCL files are found by the
$FHICL_FILE_PATH search path.

$ gm2 -c hellol.fcl

%MSG-i MF_INIT_OK:

Messagelogger initialization complete.

#MSG

19-Nov-2014 02:29:47 CST JobSetup

Begin processing the 1st record. run: 1 subRun: O event: 1 at 19-Nov-2014 02:29:47 CST

17

18 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5_00_00]

Hello, world. From analyze. run: 1 subRun: O event: 1
Begin processing the 2nd record. run: 1 subRun: O event: 2 at 19-Nov-2014 02:29:47 CST
Hello, world. From analyze. run: 1 subRun: O event: 2

TrigReport ---------- Event Summary ----—--------
TrigReport Events total = 2 passed = 2 failed = 0

TrigReport -----—- Modules in End-Path: end_path ----—--—-----

TrigReport Trig Bit# Visited Passed Failed Error Name
TrigReport 0 0 2 2 0 0 hello
TimeReport ---------- Time Summary ---[sec]----

TimeReport CPU = 0.000104 Real = 0.000189
Art has completed and will exit with status 0.
3.7 Logging in again

At some point, you will want to log out of your machine and log back
in later to continue your work. To reconstitute your development

environment, you need to,
o Select the release area

source /grid/fermiapp/gm2/setup # on gm2gpum
source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Maoc

e Change directory to your development area
cd ~/Development/g-2/first-time # On my Mac

e Run the setup script in local products (this will re-select the chosen
g-2 release)

source localProducts_gm2_v5_00_00_e6_prof/setup

o Extend the environment for the products your build depends upon
(don’t forget the leading dot)

mrb s

Now you are set to build (mrb b), run (gm2 -c FCL_FILE), and
develop.

3.8 Summary

Here is a summary of the commands for gm2 v5_00_00.

3.8.1 To checkout, build and run gm2artezmples to a new

development area

Log into machine (e.g. gm2gpum.fnal.gov)

GETTING STARTED WITH GM2ARTEXAMPLES

Select release area
source /grid/fermiapp/gm2/setup # On gm2gpum
source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Maoc

Create development area

mkdir /gm2/app/users/lyon/first-time # For me on gm2gpum
mkdir ~/Development/g-2/first-time # For me on my Mac
cd <THAT_DIRECTORY>

Setup the release
setup gm2 v5_00_00 -q e6:prof

Initialize Development area
mrb newDev

source localProducts_gm2_v5_00_00_e6_prof/setup

Checkout code
cd srcs
mrb g gm2artexamples

Get right branch (for now)
cd gm2artexamples

git flow feature track gm2_5
cd ..

Extend environment with butild dependencies

. mrb s

Build it
mrb b

Test 1t
mrb t

Run <t
gm2 -c hellol.fcl

3.8.2 Restoring environment when logging in again later

Here’s what you do to restore your environment

Log into machine (e.g. gm2gpum. fnal.gov)

Select release area

source /grid/fermiapp/gm2/setup # On gm2gpum

19

20 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5__00_00]

source /cvmfs/oasis.opensciencegrid.org/gm2/prod/g-2/setup # On Maoc

cd to development area
cd /gm2/app/users/lyon/first-time # For me on gm2gpum
cd ~/Development/g-2/first-time # For me on my Mac

Restore basic environment
source localProducts_gm2_v5_00_00_e6_prof/setup

Extend environment with build dependencies

. mrb s

Now you can work!! For example

mrb b # Build it <f you've made a change since last time
mrb t # Test it

gm2 -c hellol.fcl # Run it

4

Running the simulation

This section gives you very brief instructions on how to build and
run the gm2ringsim simulation. More details will be coming in future
versions of this document.

Be sure you are familiar with the basics in section 3.

At this moment, the released code for the simulation is quite old,! ! This should be remedied soon as gm2
so you will have to download and build all the simulation code your- v5_00_00 is adopted.
self. The first build will take awhile (about 20 minutes on the gm2gpvm
machines), but subsequent builds will be faster.

Set up the gm2 v5_00_00 release and create a new development
area. Obtain the source code and switch to the gm2 v5_00_00 branch

by following the instructions below.2 Perform the following steps in 2 Very soon, the branch switching step
will be unnecessary once we adopt gm2
v5_00_00. And unfortunately, I was
not consistent with how I named the
cd srcs branches. Sorry.

your development area, which we assume is ready to go.

Get artg4

mrb g artgéd

cd artg4d

git flow feature track gm2_vb
cd ..

Get gmZ2geom

mrb g gm2geom

cd gm2geom

git flow feature track gb
cd ..

Get gm2dataproducts
mrb g gm2dataproducts

cd gm2dataproducts

git flow feature track gb
cd ..

22 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5__00_00]

Get gm2ringsim

mrb g gm2ringsim

cd gm2ringsim

git flow feature track gb
cd ..

You can now build the code with,

. mrb s
mrb b

There are many fcl files that you can use to run the simulation.
Here’s a list of some of them,

BeamDiagnosticMuPlus. fcl Shoot individual muons that go around
the ring with a rudimentary particle gun with the fiber harp de-
ployed.

BeamDiagnosticMuPlusMuonGasGun. fcl Simulation with fiber harp
deployed using the gas gun. The gas gun makes muons randomly
appear in the ring right before decay.Since geant does not track
muons around the ring, this is a very fast simulation.

ProductionMuPlus. fcl Shoot individual muons that go around the
ring with the ring in data taking state (e.g. no fiber harp).

ProductionMuPlusMuonGasGun. fcl Same as above, but using the
muon gas gun. Very fast simulation.

beamtransport_gun. fcl Muons are not tracked around the ring.
Instead, the position and momentum of the muon is calculated
using the beam equations of motion and the muon appears in the
ring just before it decays. A very accurate and fast simulation.

inflector_gun.fcl A very slow but accurate simulation of muons
going through the inflector and around the ring.

5
Developer Workflow

The steps you follow to develop code is described here (eventually).

6
Writing Source Code

Warning: This section needs to be reviewed and cleaned up.

Your source code lives within a git project checked out to your
development area’s srcs directory. The project has a top level direc-
tory! that contains the “top level” CMakeLists.txt file along with
various subdirectories. Code with a common purpose should live in
a particular subdirectory.? You may mix headers (.h, .hh), imple-
mentation (.cc, .cpp), and configuration (.fcl) files all in the same

subdirectory.

6.1 Top level CMakeLists. txt file

The top level CMakeLists.txt file lives in your top level project
directory (e.g. srcs/gm2ringsim/CMakeLists.txt). It has the main

directives that tells CMake how to build your project.
Below is a representative top level CMakeLists.txt file.? The
mrb newProduct command will create a skeleton file for you.

1 # Ensure we are using a moden version of CMake
2 CMAKE_MINIMUM_REQUIRED (VERSION 2.8)

4 # Project name - use all lowercase
PROJECT (gm2analyses)

o

7 # Define Module search path

s set(CETBUILDTOOLS_VERSION $ENV{CETBUILDTOOLS_VERSION})

o if (NOT CETBUILDTOOLS_VERSION)
10 message (FATAL_ERROR

! For example, the gm2ringsim
project would get checked out to
srcs/gm2ringsim, which is the “top
level” directory.

2 Examine gm2ringsim for more
examples.

3 There are five main parts of the file
(roughly in order in the file)...

¢ Defining the project

¢ Loading CMake macros and
setting the CMake environment

e Setting compiler options

o Specifying external packages that

will be used

¢ Specifying subdirectories that
contain a CMakeLists.txt file and,
perhaps, code to build

11 "ERROR: setupcetbuildtools to,get the cmake modules")

12 endif ()

13 set(CMAKE_MODULE_PATH $ENV{CETBUILDTOOLS_DIR}/Modules

14 ${CMAKE_MODULE_PATH})

16 # art contains cmake modules that we use
17 set(ART_VERSION $ENV{ART_VERSION})

18 if (NOT ART_VERSION)

19 message (FATAL_ERROR

26

20
21
22

23

25
26
27
28

29

32

34
35
36
37

38

40

42
43

44

47
48
49

50

68
69

70

OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5__00_00]

"ERROR: setupyart,toyget the ,cmake modules")
endif ()
set (CMAKE_MODULE_PATH $ENV{ART_DIR}/Modules
${CMAKE_MODULE_PATH})

Import the necessary macros
include (CetCMakeEnv)

include (BuildPlugins)

include (ArtMake)

include (FindUpsGeant4)

Configure the cmake environment
cet_cmake_env ()

Set compiler flags

cet_set_compiler_flags(DIAGS VIGILANT WERROR
EXTRA_FLAGS -pedantic
EXTRA_CXX_FLAGS -std=c++11

cet_report_compiler_flags ()

Set include and library search paths (the version numbers

**

are minimum - if actual version of product is below specified,
will get error)

Everyone should include these
find_ups_product (cetbuildtools v3_07_08)
find_ups_product (art v1_08_10)
find_ups_product (fhiclcpp v2_17_12)
find_ups_product (messagefacility v1_10_26)

This project uses code from gm2ringsim,
gm2dataproducts, and gm2geom
find_ups_product (gm2ringsim v1_00_00)
find_ups_product (gm2dataproducts v1_00_00)
find_ups_product (gm2geom v1_00_00)

This project uses code from Root
find_ups_root(v5_34_12)

Make sure we have gcc
cet_check_gcc ()

Macros for art_make and simple plugins (must go after
find_ups lines)
include (ArtDictionary)

Specify subdirectories to build
add_subdirectory(ups) # Every project needs a ups subdirectory
add_subdirectory(DisplayDataProducts)

71 add_subdirectory(calo)
72 add_subdirectory(fcl)

73 add_subdirectory(test)
74 add_subdirectory(util)

76 # Packaging facility - required for deployment
77 include (UseCPack)

WRITING SOURCE CODE 27

6.1.1 When you need to add/change a line in top level CMakeLists. tzt

There are two situations for which you will have to alter the top level
CMakeLists.txt file:

If you add, delete, or rename a subdirectory If you add a subdirec-
tory, you must write a corresponding add_subdirectory(dirName)
directive.* If you delete a directory, you must remove its correspond-
ing add_subdirectory line. If you rename a directory, you must edit
its corresponding add_subdirectory line to reflect the change. If you
do not follow these steps, then some code may not build (without an
error, so this mistake will be hard to find) or you may get an error
when CMake tries to build a directory that no longer exists.

You use code from an external project If you use code from an exter-
nal project, you may need to add a corresponding find_ups_product
or similar line.?

6.2 Organizing Source Code

The build system we use is quite flexible and you can organize your
code in many ways. You may be used to having all of your header
files in an include directory with the .cc files in other directories.
This artificial separation is unnecessary. You may group files together
any way you like and may have header files and implementation files
in the same directory. Typically, it is best to group files by topic or
functionality.

6.3 Writing Modules

Modules are plugins to art that perform certain functions (analyzers,
producers, filters, and output modules). See section 10 of the Art
Work BookS for more information. Only reminders will be given here.

You should use artmod to write the skeleton of the module. Do
artmod --help-types to see the list of module types it will make.
Then just run it, giving the name of the class you want including any
namespace specification. For example,

4 The add_subdirectory directory
tells CMake to go into that subdi-
rectory and build code there. If you
don’t have the add_subdirectory then
CMake won’t look in the subdirectory
at all.

5 See section 6.8 for instructions.

28 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5__00_00]

1 artmod producer tracking:TrackFinder

2 artmod analyzer gm2analysis::CalorimeterDiags

Remember that you specify the class name, not the file name (so do
not give _module in the name).

6.4 Writing Services

TODO

6.5 Writing Input Source Modules

TODO

6.6 Directory level CMakeLists. tzt file

If your subdirectory (e.g. srcs/gm2analyses/strawTracker) has
anything to build, has header files, or has further subdirectories,
then it must have a CMakeLists.txt file (and a corresponding
add_subdirectory line in the CMakeLists.txt from the directory
above - see Sec. 6.1.1).7 If your subdirectory has code to build, then
the directory CMakeLists.txt file needs to have

1 art_make()

A directory with no .cc or .cpp files has no code to build and so
does not get an art_make line in the directory CMakeLists.txt file.

See the next section (Sec. 6.6.1) for arguments to the art_make.
You should call art_make only once per CMakeLists.txt file.

If your subdirectory has header files, then those have to be copied
to the release area when one runs mrb install. To do that, you need
a line the directory CMakeLists.txt file with

1 install_headers() # No arguments

If your subdirectory has fcl files, then those need to be copied to
the build area as well as the release area. There is some scripting in-
volved to do that (put the following in the directory CMakeLists.txt
file),

7 The directory level CMakeLists.txt
file is different from the top level
CMakeLists.txt file. The latter is in
your project top level directory, like
srcs/gm2analyses. The former is in a
subdirectory of that top level and is
described in this section.

1 # install all *.fcl files in this directory to the release area

2 file(GLOB fcl_files *.fcl)
3 install(FILES ${fcl_files}
4 DESTINATION ${productl}/${version}/fcl)

¢ # Also install to the build area

7 foreach(aFile ${fcl_files})

8 get_filename_component (basename ${aFile} NAME)
9 configure_file(

WRITING SOURCE CODE 29

10 ${aFile} ${CMAKE_BINARY_DIR}/${product}/fcl/${basenamel

11 COPYONLY)
12 endforeach(aFile)

If your subdirectory has futher subdirectories with code to build,
then you need an add_subdirectory(dirName) line for each subdi-
rectory.

6.6.1 Arguments to art_make

You can find documentation for art_make in its source code at

$ART_DIR/Modules/ArtMake.cmake. Basically, you need to specify
what libraries to link against when you use external code.8 If you
don’t use any external code, then you will have no arguments to
art_make. It will tell CMake to build all regular source, modules,
services, and input sources in the directory. If you do use external
code, then you have four choices,

o If the source file using external code is a regular source (not a

module, not a service, not an import source), then you need

1 art_make (

2 LIB_LIBRARIES

3 libraryl

4 library2 # if needed
5)

o If the source file using the external code is a module source
(e.g. analyze_my_hits_module.cpp) then you need

1 art_make (

2 MODULE_LIBRARIES

3 libraryl

4 library2 # if needed
5)

o If the source file using the external code is a service source
(e.g. analyze_my_hits_service.cpp) then you need

1 art_make (

2 SERVICE_LIBRARIES

3 libraryl

4 library2 # if needed
5)

o If the source file using the external code is source code for an input
source

(e.g. midas_source.cpp) then you need

8 See Sec. 6.8 for how to tell if you are
using external code.

30 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5__00_00]

1 art_make (

2 SOURCE_LIBRARIES

3 libraryl

4 library2 # if needed
5)

If you have a mixture of sources in your directory, you can string
the calls together. For example,?

1 art_make (

2 LIB_LIBRARIES

3 ${RO0OT_GPAD}

4 MODULE_LIBRARIES

5 gm2analyses_util

6 gm2analyses_strawtracker_util
7)

Note that it does not hurt for code to build against a library that it
doesn’t need. So if you have five modules and only one needs to link
against a library, put that library in the MODULE_LIBRARIES section.
The one that needs it will link against it and the four that don’t won’t

care.

6.7 Libraries produced from building

Every directory in your project that has code to build generates at
least one library.!? Say, for example, you have a directory called
gm2analyses/calo. Regular sources (not modules, services, nor in-
put sources) get compiled and the objects go into a library called
libgm2analyses_calo.so (the name is the directory path with
slashes replaced by underscores). Each module in the directory gets
its own library. For example, if there is a module in that directory
called Analyze_Calo_module.cc then that code will go into a library
called 1ibgm2analyses_calo_Analyze_Calo_module.so. A similar
thing happens for services and input sources. Therefore, one directory
of code may produce several libraries. The art_make directive in the
directory CMakeLists.txt file tells the build system to build code and
make the corresponding libraries.

6.8 Using External Code (Linking)

Your code is almost never self-contained, especially when writing
within the Art framework. You may use functions and classes from
external libraries, like Root and Geant4. You may use algorithms,
data products, and other functionalities from other projects, like

9 In the example to the left, regular
sources get linked against Root’s
libGpad.so (see Sec. 6.8.2) and
modules get linked against code built
in the srcs/gm2analyses/util and
srcs/gm2analyses/strawtracker/util
directories (see Secs. 6.8.4 and 6.8.5).

19 An important note, if your di-
rectory only has header files in it
(should be a rare situation for code
written by users), then no library
will be produced (because there is
no code to build - the header files
are all included by other source
code). You still need the directory
level CMakeLists.txt file for the
install_headers() directive, but do
not do art_make. See Sec. 6.6.

gm2ringsim. You may use objects defined in other directories in your
project. If you are writing an art module or service, you may use
objects defined in the same directory, but in a different file from the
module or service. All of these examples are “external code”.

Art uses dynamic linking, which means that the art executable
(ours is called gm2) has very little code in it. Instead, it loads all of
the libraries it needs at runtime. The other style is static linking
where the executable has embedded in it all of the libraries it needs.
Dynamic linking, as the name suggests, allows for flexibility with one
executable able to load a variety of different libraries decided upon
at runtime with the configuration file. There is, however, overhead
in dynamic loading typically experienced as slow start-up time of
the program. Static linking produces an executable with all of the
libraries built in - so there is little flexibility in terms of functionality.
But the start up time is much faster. Static linking typically leads to
many copies of executables for the different functionalities, resulting in
duplication of libraries that are in common. For maximum flexibility
and non-duplication of libraries, art loads everything dynamically.

How DO YOU KNOW WHEN YOU ARE USING EXTERNAL CODE?
An easy indicator is when you have a #include for a header file. For
each #include, you need to think and perhaps add a corresponding
link directive in a CMakeLists.txt file.!! If you forget to link to a
library that you need, you will get a missing symbol error when you
try to run. This section will explain how to figure out these situations
and actions you need to take.

6.8.1 Includes for system headers and base art headers

System headers, like #include <string> do not require any special
directives for linking. You get them for free.

Headers in art, fhiclcpp, and messagefacility do not require
anything in your directory level CMakeLists.txt file. The correspond-
ing libraries are automatically loaded by the art executable. Your top

level CMakeLists.txt file must contain the following lines,'?

2 cet_report_compiler_flags ()

1+ find_ups_product(art v1_08_10)
5 find_ups_product (fhiclcpp v2_17_12)
6 find_ups_product (messagefacility v1_10_26)

WRITING SOURCE CODE 31

1 Remember the two types of
CMakeLists.txt files: “top level”

and “directory level”. The former

(see Sec. 6.1) is the potentially big
file at the top level of your project.
The latter (see Sec. 6.6) is the smaller
file in the directory with your actual
source code files.

12 These lines add header file direc-
tories to the compiler include search
path (e.g. without them, you will get
a compilation error that header files
cannot be found).

32 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5__00_00]

6.8.2 Includes for Root headers

Including a header from Root is a little unusual because you do not
have to give a path in the include, e.g. #include "TCanvas.h" (not
#include "root/TCanvas.h"). If you include a header from Root,
you will also need to link to the corresponding Root library. First, in
the top level CMakeLists.txt file, you must have,!?

1
2 cet_report_compiler_flags ()
3

4+ find_ups_root(v5_34_12)

If you look at the code for the find_ups_root CMake macro at
$CETBUILDTOOLS/Modules/FindUpsRoot . cmake you will see lines
like, !4

13 That find_ups_root line adds the
Root headers to the compiler include
search path and creates CMake
variables corresponding to each Root
library.

. find_library (ROOT_GLEW NAMES GLEW PATHS ${ROOTSYS}/lib

2 NO_DEFAULT_PATH)

4 These lines define the CMake
variables that correspond to Root

3 find_library (ROOT_GPAD NAMES Gpad PATHS ${ROOTSYS }ibkites. You use them in the direc-

. NO_DEFAULT_PATH)

o

6 NO_DEFAULT_PATH)

tory level CMakeLists.txt file to tell
Make to link against that library.

find_library (ROOT_GRAF NAMES Graf PATHS ${RO0TSYS}911b

7 find_library (ROOT_GRAF3D NAMES Graf3d PATHS ${RO0TSYS}/1lib

s NO_DEFAULT_PATH)

To determine the Root library you need, look up the Root object
in the Root documentation at http://root.cern.ch/drupal/content/
reference-guide (select the appropriate version of Root - usually the
PRO version). Find the class name from the list and click on it. On
the new page, on the very right hand side in a little greyed out box it
will say the library that corresponds to that Root object. For example,
if you #include "TCanvas.h" you need to link against the 1ibGpad
library. The CMake variable name will in general be the name of the
library, all upper case, with the 1ib replaced by ROOT_. So 1ibGpad —
${ROOT_GPAD}.

In your directory level CMakeLists.txt file, you will have the
art_make directive. Add the appropriate CMake variable correspond-
ing to the Root library you need. See Sec. 6.6.1 for where to put such
items in the arguments. For example,1®

1 art_make (

2 LIB_LIBRARIES

3 ${ROOT_GPAD}
4 MODULE_LIBRARIES
5 ${RO0OT_TREE}

6 ${RO0OT_TVMA}

15 In the example left, regular sources

are linked against 1ibGpad.so
while modules are linked against
libTree.so and 1ibTVMA.so.

http://root.cern.ch/drupal/content/reference-guide
http://root.cern.ch/drupal/content/reference-guide

WRITING SOURCE CODE 33

6.8.3 Includes for GEANT headers

To include a header file from Geant4, requires you to have Geant4/
in the header path, for example #include "Geant4/G4Track.hh". If
you include such headers in your code, then you will also need to link
against the Geant4 libraries. First, in your top level CMakeLists.txt
file, you must have,

1

2 cet_report_compiler_flags ()
3 .« ..
4 find_ups_geant4(v4_9_6_p02)

5

That line adds the Geant4 headers to the compiler include
search path and creates the CMake variables ${G4_LIB_LIST}
and ${XERCESLIB}. For any Geant4 header, just add those CMake
variables to the art_make directive in your directory CMakeLists.txt
file. See Sec. 6.6.1 for where to put such items in the arguments. For
example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,16

1 art_make (
16 If you are curious, you can see
2 LIB_LIBRARIES where G4_LIB_LIST is defined in
3 gm2geom_calo $CETBUILDTOOLS_DIR/Modules/FindUpsGeant4.cmake.
. XERCESLIB goes with Geant.
4 gm2geom_station
5 artgd4_material
6 artgd_util
7 ${XERCESCLIB}
s ${G4_LIB_LIST}
9 SERVICE_LIBRARIES
10 gm2ringsim_calo
11)

6.8.4 Includes for headers in the project

The #include directive should include the path to the header file,
including the name of the project even if the header is in the same
directory as the source, though you could just give the header file
name. For example, if CaloHitSD.hh is in the gm2ringsim/calo
directory, then CaloHitSD.cc, when it includes CaloHitSD.hh, can do
either

1 #include "CaloHitSD.hh"

34 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5__00_00]

or
1 #include "gm2ringsim/calo/CaloHitSD.hh"

The latter is preferred as it is clearer, but if you change the name of
the directory, you must change the include as well.

If you have a regular source file and it includes a header that is
present in the same directory, then you do not need to do anything
to the CMakeLists.txt files. If you have a module, service, or input
source file and it includes a header that is present in the same direc-
tory, then you need to link against the library for that directory. You
do not need to add anything to the top level CMakeLists.txt file.

To the directory CMakeLists.txt file, you must add the library. See
Sec. 6.6.1 for where to put such items in the arguments. For example,
srcs/gm2ringsim/calo/CMakelists.txt has, in part,1”

1 art_make (

2 LIB_LIBRARIES

3 gm2geom_calo

4 gm2geom_station
5 gm2ringsim_station
6 artg4_material
7 artg4_util

8 ${XERCESCLIBZ}

9 ${G4_LIB_LIST}
10 SERVICE_LIBRARIES

11 gm2ringsim_calo
12)

If any source file uses a header that is present in a different direc-
tory in your project, then you must link against that library. In the
example above, code in the gm2ringsim/calo directory includes code
from gm2ringsim/station, and hence gm2ringsim_station is present
in the arguments of art_make.

An important exception to these instructions is if the directory with
the header file contains only header files. In that case, that directory
produces no libraries and you do not have to change the directory
CMakeLists.txt file.

6.8.5 Includes for headers in other projects

If you have a source file (regular, module, service, or input source)
that uses code from another project, then you need to do some work.
An example here is code in gm2ringsim uses code from the gm2geom
and artgéd projects. The #include needs the path to the header

file including project name, directory name and header name. For
example, #include "artg4/util/util.hh".

7 In the left example, services in
that directory are linked against
the library that gets created

from the regular sources, namely
libgm2ringsim_calo.so. You can
predict the name of the library by
taking the source directory (e.g.
gm2ringsim/calo) and replacing the
slashes by underscores.

In your top level CMakeLists.txt file, you need a find_ups_product
line for the project specifying the project name and a minimum
version number. See Sec.6.1 for an example.

In your directory CMakeLists.txt file, you need to list the library
corresponding to the code you are using. See Sec. 6.6.1 for where to
put such items in the art_make arguments. For example,
srcs/gm2ringsim/calo/CMakeLists.txt has, in part,

1 art_make (

2 LIB_LIBRARIES

3 gm2geom_calo

4 gm2geom_station
5 artg4_material
6 artgé4_util

7 ${XERCESCLIB}

8 ${G4_LIB_LIST}
9 SERVICE_LIBRARIES
10 gm2ringsim_calo
1)

When the regular sources are built, they will be linked against
code in gm2geom/calo, gm2geom/station, artg4/material, and
artgd/util.

An important exception to these instructions is if the directory
with the header file contains only header files. In that case, that
directory produces no libraries and you do not have to change the
directory CMakeLists.txt file. You still need to have the top level
CMakeLists.txt file correct as described above.

WRITING SOURCE CODE 35

7
Things You May Do in Your Code

This chapter contains some reminders of common things you do in
Muon g — 2 code.

7.1 Dealing with parameters

The constructor for your module or service has the parameter set as
an argument. You can retrieve information from the parameter set
and supply defaults if the parameter does not exist as in the example
below.

1 gm2ex::CalorimeterDigitizer::CalorimeterDigitizer(

2 fhicl::ParameterSet const & p)

3 category_ (p.get<std::string>("category","digi")),

. TAURAMP _ (p.get<float>("TAURAMP", 1.4 /* ns */)),

5 TAUDECAY _ (p.get<float>("TAUDECAY", 36.4 /* ns */)),

6 PULSELENGTH_ (p.get<int>("PULSELENGTH", 30 /* samples */)),
v/

7.2 Readling enviornment variables

1 #include <cstdlib>
> /).
3 std::string value = std::getenv("PATH'');

The argument to std::getenv is a constant character array, not a
std: :string.
7.8 Throwing an exception

See http://mu2e.fnal.gov /public/hep/computing/exceptions.shtml.

1 #include "cetlib/exception.h"
> // .
s if (something) {

http://mu2e.fnal.gov/public/hep/computing/exceptions.shtml

38 OFFLINE COMPUTING AND SOFTWARE MANUAL [GM2 v5__00_00]

4 throw cet::exception(CATEGORY) << "Message\n"

7.4 Finding a file

cetlib has a nice facility for searching for files in a path specification.
See $CETLIB_INC/cetlib/search_path.h.

It may be convenient to specify the search path in a FHICL param-
eter with the possibility of providing an environment variable. Here
is some code that takes a search path through the parameter, but if
the first character is a $, it then gets the path through the specified

environment variable.

1 gm2util::MetadataFromFile::MetadataFromFile(

2 fhicl::ParameterSet const & p)

3 searchPath_ (p.get<std::string>("searchPath", ".")),
4 fileName _ (p.get<std::string>("fileName")),

5 keyName _ (p.get<std::string>("keyName"))

o 1

7 // Let's parse the search path
8 // If the first character 4is a dollar sign, then the

9 // rTemaining s an environment variable

10 if (searchPath_.at(0) == "$") {

11 std::string envVar = searchPath_.substr(1);

12 char*x envValue = std::getenv(envVar.c_str());

13 if (! envValue) {

14 searchPath_ = ".";

15 throw cet::exception("META_DATA_FROM_FILE") <<
16 "Environment_ variable " << envVar << "_isgnot_ set";
17 }

19 searchPath_ = std::string(envValue);

20 }

21 }

8
Frequently Asked Questions

Some questions are answered here that didn’t seem to fit in other

sections.

Where is the art source code? The art source code! for a par-
ticular gm2 release is accessible in our release area for you
to peruse. Set up the the release (see section 3) and look in

$ART_DIR/source/art.

! Never use the source code directory
for an #include in your code. Instead,
just use #include "art/whatever.h"
and the build system will find it in
$ART_INC.

FREQUENTLY ASKED QUESTIONS 41

Index

add__subdirectory, 27
art__make, 28

arguments, 29
artmod, 27

CMakeLists.txt
directory level, 28
top level, 25

exceptions, 37
external code, 30

find__ ups_ geant4, 33
find__ups_ product, 31
find__ups_ root, 32

input source
writing, 28

install__headers, 28

linking, 30

modules
writing, 27

services
writing, 28

	What is this document?
	What code goes with this document?
	Obtaining newer versions of this documentation
	Obtaining the source for this documentation, contributing to it, and building it

	Releases of gm2
	gm2 v5_00_00 -q e6:prof
	gm2 v201402 -q e4:prof

	Getting started with gm2artexamples
	Logging in and selecting a release area
	Starting a development area
	Checkout code
	Building code
	Testing
	Running
	Logging in again
	Summary

	Running the simulation
	Developer Workflow
	Writing Source Code
	Top level CMakeLists.txt file
	Organizing Source Code
	Writing Modules
	Writing Services
	Writing Input Source Modules
	Directory level CMakeLists.txt file
	Libraries produced from building
	Using External Code (Linking)

	Things You May Do in Your Code
	Dealing with parameters
	Readling enviornment variables
	Throwing an exception
	Finding a file

	Frequently Asked Questions
	Index

